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both of which contribute to the likelihood of casualty survival. These decisions become complicated when
MEDEVAC assets and medical treatment facilities are distinguishable and casualties are prioritized as life-
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Abstract

Decision making in military medical evacuation (MEDEVAC) of casualties consists of identi-
fying which MEDEVAC asset to dispatch in response to a casualty and which medical treatment
facility to transport the casualty, both of which contribute to the likelihood of casualty survival.
These decisions become complicated when MEDEVAC assets and medical treatment facilities
are distinguishable and casualties are prioritized as life-threatening and non life-threatening. In
this paper, an undiscounted, infinite horizon Markov decision process model is developed that
examines the interrelated decisions of how to optimally dispatch MEDEVAC assets to calls for
service and transport casualties to medical treatment facilities. The model accounts for errors
made during triage of casualties to investigate the revelation of information over time and al-
lows for batch arrival of casualties to the system. The MDP is solved with a value iteration
algorithm. The optimal policy is compared to three heuristic casualty transport policies.

Keywords: Markov decision process, military medical evacuation systems, triage

1 Introduction

Effective medical evacuation (MEDEVAC) of wounded soldiers (casualties) in military operations
is important to the survivability of the combat soldier (Zinder, 2007). Transporting casualties to a
medical treatment facility in a timely manner prevents the deteriorating health and potential death

of casualties. The effective MEDEVAC of casualties also contributes to the potential psychological



advantage for those participating in combat, who understand that medical assistance will come
quickly once requested (Bastian et al., 2012).

While this paper focuses on a model configuration for the United States, the model is applicable
to other countries. Effective evacuation of casualties is an important problem shared across all
countries that support combat troops. Moreover, issues examined in this paper, such as imperfect
initial triage, the collection of new information over time, and medical guidelines for transporting
military casualties, are generally shared across countries, as evidenced by a recent MEDEVAC
summit held in London, England in October 2013 (MEDEVAC Summit, 2013).

This paper focuses on the dispatch and transport of causalities in United States military sys-
tems. Casualties arrive as calls for service, where dispatchers interpret the call detailing a casualty
event and make a resource allocation decision regarding which MEDEVAC asset to dispatch to the
casualty and later select which medical treatment facility to transport the casualty (Bozell, 2013).
The MEDEVAC asset dispatched also transports the casualty to the medical treatment facility
(i.e., a different MEDEVAC asset would not transport the casualty based on additional informa-
tion collected at the scene) and therefore, the dispatch and transport decisions are interrelated.

Identifying effective policies for dispatching air MEDEVAC assets and transporting casualties
can be counter-intuitive. A fleet of potential air MEDEVAC assets are distinguishable by their base
location, and therefore articulate different response times to casualties. Likewise, medical treatment
facilities are distinguishable by both the capable level of care, i.e., a role 2 medical treatment facility
versus a role 3 medical treatment facility, and the proximity of the medical treatment facility to
the casualty location. Further, there exists a triage scheme within military evacuation systems, in

which the categories used to rank injuries for precedence in evacuation are as follows (Bozell, 2013):

e “CAT A”: Alpha category includes urgent casualties that need to be treated within one hour.

e “CAT B”: Bravo category includes priority casualties that need to be treated within four

hours.

e “CAT (C”: Charlie category includes routine casualties that need to be treated within twenty-

four hours.

The evacuation triage system lends itself to sub-categorizing casualties based upon priority. For



example, a system that identifies only high-priority and low-priority casualties, the calls for service
which have been categorized as CAT A could be seen as high-priority, while all other calls for
service could be seen as low-priority. An alternative classification would be treating both the CAT
A and CAT B calls for service as high-priority and the CAT C calls for service as low-priority. The
prioritization scheme can be generalized for systems with more than two priority levels.

Military medical evacuation systems aim to transport CAT A casualties to a medical treatment
facility within one hour, a practice commonly known as the Golden Hour (Bozell, 2013). The
fundamental idea of the Golden Hour is that mortality is least likely to occur if initial treatment
of a severe trauma casualty begins within one hour post injury. A military evacuation system is
evaluated against the Golden Hour standard to increase survivability of the most urgent CAT A
casualties. Improving the logistics of MEDEVAC systems to meet the Golden Hour standard is an
important problem found frequently in the popular press (Pahon (2012); Doane (2011); Shinkman
(2013)).

The Golden Hour performance measure evaluates time until treatment of a casualty, and it is
in contrast with performance measures used by civilian emergency medical systems (EMS). Nearly
all civilian EMS systems evaluate performance according to response times as opposed to casualty
delivery times (McLay, 2010). As a result, nearly all research in civilian systems focuses on triage
accuracy and initial dispatch decisions. However, the importance of triage on resource allocation
decisions is well-documented area in civilian systems (see Clawson et al., 1999; Dunford, 2002), and
this issue becomes more complex in military MEDEVAC systems because dispatch and transport
decisions are interrelated and more accurate information is collected at the scene.

This paper formulates a Markov decision process (MDP) model to solve a MEDEVAC asset
dispatching and casualty transporting problem with two interrelated types of decisions: first, how
to initially dispatch location-dependent air MEDEVAC assets to location-dependent casualties,
and second, how to identify distinguishable hospitals to transport the casualties. Both types of
decisions indirectly affect the high-priority casualty’s likelihood of survival, which is dependent
upon time until treatment in a medical treatment facility (Cunningham et al., 1997). To gain
insight into military medical evacuation systems, the MDP model determines how to maximize the

long-run average Golden Hour reward over the truly high-priority casualties while also providing



timely evacuation to low-priority casualties. The MDP model allows for classification errors in the
initial triage, in which a truly low-priority casualty may be initially classified as high-priority, and
vice-versa, thus leading to dispatch decisions with imperfect information. However, upon arrival
at the scene, it is assumed that the medics from the responding air MEDEVAC asset accurately
diagnose the severity of each call thus make transport decisions to the medical treatment facility
with perfect information. The MDP model also accounts for batch, or multiple, casualties in a call
for service.

This paper is organized as follows. Section 2 provides a literature review on military MEDEVAC
asset optimization as well as dispatching and transporting models in the operations research litera-
ture. Section 3 outlines the novel MDP model. A computational example of the U.S. configuration

is included in Section 4. Concluding remarks and future work are given in Section 5.

2 Background

There are a number of existing military research papers related to this effort. Higgins (2010) intro-
duces the role and capabilities of U.S. Army MEDEVAC helicopters by providing an assessment of
the operational issues. Operational issues of helicopters are pivotal in any research study of casu-
alties and medical evacuation systems, due to the speed of response dictating survival likelihood.
Several models focus on locating assets. Bastian (2010) presents a multi-criteria decision analy-
sis model to determine the minimum number of MEDEVAC helicopters needed at each medical
treatment facility to maximize the coverage of the theater-wide casualty demand, while minimizing
the maximal medical treatment facility evacuation site total vulnerability to enemy attack. Zeto
et al. (2006) also seeks to maximize the theater-wide casualty demand coverage, by examining the
pre-location of air MEDEVAC assets, along with type and quantity, while balancing MEDEVAC
asset reliability. Fulton et al. (2009) introduce a two stage stochastic optimization modeling frame-
work for the medical evacuation of casualties, which identifies optimal casualty evacuation sites
and medical treatment facility sites in response to stochastic demands for service. In contrast to
asset emplacement strategy, this paper considers dispatching and transporting decision-making to

maximize a Golden Hour utility function.



Bastian et al. (2012) examines the required capabilities of medical evacuation platforms of the
future U.S. MEDEVAC platforms, including identifying the zero-risk aircraft ground speed. Bastian
et al. (2013) further examine three research issues surrounding future U.S. MEDEVAC platforms,
including optimal operational capabilities, trade-off considerations of different aircraft engines, and
the effect of weaponizing the current MEDEVAC asset fleet on range, coverage radius, and response
time. While Bastian et al. (2012, 2013) evaluate competing objectives of future casualty evacuation
systems, this paper focuses on tactical issues such as real-time dispatch and transportation issues,
two issues that have been overlooked in the military MEDEVAC optimization literature. Therefore,
the model in this paper provides a unique contribution to the military MEDEVAC optimization
literature by examining the inter-related dispatching and casualty transporting decisions given that
there are errors in initial triage.

Military and civilian emergency service systems are similar in nature as both systems deal
with the transportation of time-sensitive customers/patients to higher level medical care facilities.
Further, both emergency service systems have high and low prioritized customers, a complexity
that makes resource allocation decisions difficult. To improve response and transport times to
the truly most critical patients, it is important to understand when to dispatch the closest server
versus when to ration that asset instead. McLay and Mayorga (2013) present a MDP model for
dispatching servers to spatially-distributed patients that maximizes the fraction of patients who are
responded to within a fixed time frame while allowing for the possibility of classification errors in
initial patient classification. This paper is similar to McLay and Mayorga (2013) as both develop a
MDP model and consider potential classification errors in initial classification. However, they differ
in that this paper evaluates the impact of additional information that becomes available over time
during the response to and treatment of a casualty as well as its impact on transport decisions.

Several other papers have examined dispatch issues for civilian EMS and fire departments.
Jarvis (1975) introduces a Markov decision process for determining optimal dispatching policies for
a single type of server. Swersey (1982) develops a Markov model for determining how many fire
engines to send to prioritized fire calls that balances the costs associated with dispatching too few or
too many. Ignall et al. (1982) extend this model to account for calls and fire engines that are spatially

distributed, and they provide a “preparedness” heuristic rather instead of exploring an optimal



solution. Both Andersson and Vérbrand (2007) and Lee (2011) propose similar “preparedness”
heuristics for dispatching ambulances to calls. A related stream of literature focuses on spatial
queuing models and approximations that describe dispatching dynamics rather than prescribing
dispatch decisions (Larson, 1974, 1975; Budge et al., 2009; Jarvis, 1985).

Emergency medical service systems identify which hospital to transport customers/patients. In
the civilian side, the patient or protocols from the medical director dictate to which hospital an
ambulance takes a patient, and therefore, there are rarely choices. Shunko et al. (2011) explores
hospital transport decisions using game theory in the context of two competing hospitals that can
send delay signals to turn away incoming ambulances, a situation that does not arise in military
medical systems.

In summary, this paper is distinct from the existing civilian emergency service systems literature,
because of its consideration of batch arrivals, prioritized casualties, and and the inclusion of casualty

transport in the modeling framework.

3 Markov decision process model

This section presents the MDP model for dispatching air MEDEVAC assets and transporting
prioritized casualties in a military medical evacuation system with imperfect information during
triage. The model parameters depend on the elapsed time during the treatment of each casualty,
because military medical evacuation systems are evaluated by the transfer of high-priority casualties
to the medical treatment facility before the Golden Hour. There are seven time steps to a military

medical evacuation (Bastian, 2010):

1. Notification time (call arrival).

2. MEDEVAC asset departure time (“wheels up”).

3. Arrival at the scene.

4. Departure from the scene.

5. Arrival at the medical treatment facility.

6. Transfer of the casualty to medical treatment facility.

7. Arrival at MEDEVAC asset home location (return to service).



Arrival at
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Figure 1: Time line during military medical evacuation

Figure 1 presents the four time intervals used throughout the remainder of this paper. Response
time is the length of time from departure time (2) to the MEDEVAC asset arrival at the scene
(3). Service time is the length of time from departure time (2) to leaving the scene (4). Transport
time is length of time from the MEDEVAC asset leaving the scene (4) to returning to its home
station after transporting a casualty (7). Transfer time is the length of time from injury (1) to the
casualty being transferred to a medical facility (6).

The input parameters of the MDP model are summarized next, followed by the system dynamics.

n = the number of casualty locations,
m = the number of air MEDEVAC assets, each at a fixed home location,
d = the number of medical treatment facilities,

R = the classified risk level during triage, with R € {H,L}, where H (L) denotes classified
high-risk (low-risk),

r = the true risk level, with r € {H’, L'}, where H' (L) denotes truly high-risk (low-risk),
A = the call arrival rate,

X = random variable representing the number of casualties X € {1, 2, ..., N} arriving in a batch

arrival,

P = the conditional probability that a batch call for service with X casualties arrives at location

1, given that a call arrives, 1 = 1,2, ...n, X =1,2,..., N,



Péﬁi = the conditional probability that a batch call for service with X casualties arrives at lo-
cation 7 has classified risk level R € {H, L}, given that a call arrives, i = 1,2, ..., n,

X=1,2,...,N,

Pfme = the conditional probability that a batch call for service with X casualties and classified

risk level R € {H, L} has true risk level r € {H', L'}, i = 1,2, ..., n,

,ufj(- = the expected service time when MEDEVAC asset j responds to a batch call for service with

X casualties at location 4,7 = 1,2, ...,nandj = 1,2, ..., m, X =1,2, ..., N,

di;1 = the expected transport time when MEDEVAC asset j transports a batch of casualties from
location ¢ to medical treatment facility & where j = 1,2, ..., m, ¢ = 1,2, ..., n, andk =
1,2, ...,4d,

ufj{kr = the expected utility when MEDEVAC asset j transports a batch of X casualties with
true risk level r € {H', L'} from location i to medical treatment facility k, where j =
,2,....mi=1,2,....,n,X=1,2,..., N,andk = 1, 2, ..., d.

The state variable reflects the positions of each of the m MEDEVAC assets and thus can be
represented by the m-dimensional vector s, with s(t) = (s1, 82, ..., Sm). To describe the state space
in a succinct way, we describe all possible values that each component of the state space can take. In
state s(t), MEDEVAC asset j has three possible types of values corresponding to the three possible
events in the system 1) asset j can be sent to a call for service that arrives, while servicing this call
at the scene, s; is described by a call location 4, a classified priority R, and a batch size X, 2) asset
j finishes service at the scene of service and begins transporting casualties to a medical treatment
facility denoted by Dy, and 3) a busy MEDEVAC asset becomes free and returns to its home
location (s; = 0). Note that these possible values for s;—(i, R, X'), Dy, O—are all distinct values
that are mapped to integers in the computational implementation of the value iteration algorithm
used to solve the model. The total number of states is equal to (1 + 2Nn + nd)™. Although the
MDP model suffers from the so-called “curse of dimensionality,” we will explore conditions under
which the state space can be made smaller in Section 4.

Only one component of the state variable changes after an event occurs at time ¢t. Therefore,
s(t + 1) = s(t) except for component s; in s(t + 1). Let ¢ denote the new value of s; in state
s(t + 1), either (i, R, X), Dy, or 0. Let the transition function s(t + 1) = SM(s(t)|s; = ¢) capture

the new state at time ¢ + 1.



The following assumptions are made in the model. First, if a call for service arrives, an available
MEDEVAC asset must be dispatched to the casualty if any are available. Otherwise the call is
assumed lost to our system. This assumption is acceptable because in practice, military systems
leverage other assets to treat these casualties (Bozell, 2013). Second, service cannot be preempted
and air MEDEVAC assets cannot be rationed in expectation of in-coming calls for service. Third,
a MEDEVAC asset selects a medical treatment facility destination immediately prior to departing
from the scene, and immediately after reassessing the casualty risk to obtain the true risk level
r. Therefore, transportation of casualties is made with information of the true risk level r €
{H', L'}. This can be contrasted with the dispatch decision which is made with the potentially
inaccurate triage classification. Thus, the interrelated decisions of dispatch and transport capture
the revelation of information of each casualty’s risk level over time. Fourth, the MEDEVAC asset
that responds to the casualty must transport the casualty to the medical treatment facility. Fifth,
batch arrivals of casualties at a location can be transported by a single responding MEDEVAC
asset, that is the capacity of an air MEDEVAC asset is greater than or equal to the number of
casualties in a batch. This assumption is reasonable, since in practice, the capacity of MEDEVAC
asset is larger enough to transport virtually all batched casualties that arrive (Bastian, 2010).
Lastly, risk levels are assessed on a batch level, not a casualty level. A single asset responds to a
batch, not individual casualties, and therefore, risk levels assigned on the batch level is practical
and easier to operationalize.

The objective of the MDP model is to determine which MEDEVAC asset to dispatch to a
casualty and identify which medical treatment facility to transport a casualty, for each state in
the state space, so that the expected number of truly high-priority calls that arrive at a medical

treatment facility within one hour per stage is maximized.

The optimality equations for the infinite-horizon, average cost MDP model are given next, where
Its,=(i,r,X)}s I{s,=Dy}» and Is,—oy are indicator functions representing MEDEVAC asset j is serving
X casualties at location ¢, traveling to medical treatment facility k, and being idle, respectively. An
infinite-horizon MDP model with steady-state parameters is appropriate because of the duration
of military operations. We use uniformization to convert a continuous time MDP model into an

equivalent discrete time MDP model. To apply uniformization, the maximum rate of transitions is



determined to be vy = A + ZJ 1 Bj, where 3; = max {maXzX {/; } max; j, {6;}} ,j=1...m
Note that g is the optimal average utility per stage and 14(s(t)) is a relative value function in state
s(t) = (s1,82,-..,5m), and A1(s(t)) and Aa(s(t)) represent the set of dispatching and transporting

actions available in state s(t) during iteration ¢, respectively.

n

d m
g+ v(s(t)) % ;2; k) s, —p (8™ (s(t)]s; = 0)) (1a)
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The four lines in the value functions (1) represent the three events that result in a change in the
state variable plus the fourth “event” that nothing changes between stages (line (1d)). The first
line (1a) accounts for the event of busy air MEDEVAC assets completing service after transporting
a casualty, where () ! captures the mean transport time and v(S™ (s(t)|s; = 0)) represents the
value of the state when MEDEVAC asset j returns home and is available for service. Line (1b)
accounts for the dispatch of a MEDEVAC asset to a batch of casualties of size X that arrives to
the system with classified priority R. Here, /\PX PX| captures the probability of a call for service
of X casualties at casualty location ¢ and of classified risk level R arrives to the system. The
second part of line (1b) selects the MEDEVAC asset j to the incoming call for service (i, R, X)
that maximizes the value of dispatching a MEDEVAC asset. Line (1c¢) accounts for the decision
to transport a batch of casualties to a medical treatment facility, which occurs when service at the
scene is completed. Here, (ui]) represents the mean service time at the scene, and P, IR captures
the conditional probability of the casualty’s true risk level r given its classified as risk level R and
location i. The second part of line (1c) selects the medical treatment facility that maximizes the
value of transporting casualties to a medical treatment facility, where ufj(.kr represents the reward

received when MEDEVAC asset j transports X casualties at casualty location ¢ of true risk level r

to medical treatment facility k. Appendix A summarizes a value iteration convergence algorithm

10



using the corresponding N-stage finite-horizon optimality equations (see Puterman, 1994).

Lastly, the assessment of the severity of the calls is imperfect during triage, resulting in possible
mismatches between the classified risk level R € {H, L} and the true risk level r € {H’, L'} as
captured by the P, pn; parameters. The accuracy of triage classification is assumed known, such
as from past system performance data. Since military medical evacuation systems are evaluated
according to the response to casualties that are truly the most critical (H'), it is of interest to
match the classified risk levels R to the true risk levels r. Let o denote the ratio of the proportion
of classified high-risk casualties that are truly high-risk to the proportion of classified low-risk

casualties that are truly high-risk,
X
X PH’ |H
= —5—.
P H'|L

[0}

X

Therefore, a can be interpreted as the accuracy of the triage for high-priority casualties, which we

assume is independent of the casualty location. When o™ = 1.0, the classified high-risk casualties

X

are at least as likely to be truly high-risk as classified low-risk casualties. As a* — oo, the set

of truly high-risk casualties is a subset of classified high-risk casualties (when Py < Pp). In the
MDP model, input parameter P7:)|(Rﬂi is a function of o™, and can be computed as follows. Note

pPX,
that o™ = % since triage accuracy is independent of the casualty location. Rearranging and
H'|LNi

applying Bayes rule yields:

aXPX
'|Hﬂi - PX i|H' Hﬂi‘h :
LNi

Rearranging, noting that ngm,‘ gt PI){(m‘| = PZ.)‘(H,, and applying Bayes rule again yields:

X pX
o PH’|i

X
Pmni = pX 1/aX\PX
H\i+( fa?) Lli

The analogous procedure can be applied to classified low-risk calls, yielding P})I(,| Lo

Appendix B contains theoretical results related to transportation policies in the MDP model
proposed in this paper. The first result indicates that if the expected times to transfer a casualty
at two medical treatment facilities are the same, it is optimal to transport to the medical treatment

facility with the highest utility. The second result indicates that if the utilities for transferring a

casualty at two medical treatment facilities are the same, it is optimal to transport to the medical

11



treatment facility with the shortest expected time until transfer. However, these results are not
actionable when there are trade offs between transfer time and quality of care. Therefore, we

examine the trade offs in the computational example in the following section.

4 Computational example

4.1 Problem setup

Consider a military medical evacuation system example in support of an U.S. Army brigade, where
the location of casualties to be evacuated and medical treatment facilities are both known. As
described in Bastian et al. (2012), the area of operations for future U.S. Army brigades (a military
unit with over 3,000 personnel) is 300 km?, and a sub-area of 30 km? containing four air MEDEVAC

assets and four casualty locations (m = n = 4) is proposed for analysis here (see Figure 2).

Location 2 Location 3
21.2 km 15 km
30 km
Location 1 Location 4
30 km

Figure 2: Geography of military medical evacuation system with 4 casualty locations and 4 air
MEDEVAC assets

Each square in Figure 2 is 15 kilometers long and 15 kilometers wide. Travel times are computed
using the Euclidean distance between locations and MEDEVAC assets have a flight speed of 155
nautical miles per hour (knots) Bastian (2010).

There are two distinguishable medical treatment facilities (i.e., d = 2) available in support of

the Army brigade—the first is a role 2 medical treatment facility denoted k = 2, and the second is

12



a role 3 medical treatment facility denoted k = 3. The utilities u; j, g+ are set based on the time
it takes for asset j to transfer a casualty at location ¢ to medical treatment facility k. Suppose this
transport time takes t hours, on average, to a role 2 medical treatment facility. Then, the modified
Golden Hour utility function as a function of ¢ is max{z; + 1,0}. The utilities for transporting a
casualty to a role 3 medical treatment facility is assumed to be a factor of I' increase over the role
2 utility. Moreover, we assume the utility for transporting true low-priority casualties is zero, since
these casualties are expected to survive regardless of where they are transported.

We focus on the disparity in proximity and medical treatment quality between the role 3 and role
2 medical treatment facilities in this example. The relative utilities and travel times between these
two types of facilities are pertinent when managing military medical evacuation system logistics.
Therefore, define the distance ratio 6 as the relative travel distance to the role 3 medical treatment
facility as compared to the role 2 medical treatment facility for each call location ¢ and responding
MEDEVAC asset j:

5..
=222 i=12. . .nj=12. m.
0i,j,2

When 6 = 2, the relative transport time to the role 3 medical treatment facility is twice the relative
transport time to the role 2 medical treatment facility, given the same MEDEVAC asset j and
demand location i.

Define the reward ratio I' to distinguish between the system utility received transporting a truly
high-priority casualty to the role 3 medical treatment facility and the utility received transporting

a truly high-priority casualty to the role 2 medical treatment facility.

When I' = 2, the role 3 medical treatment facility is twice as medically capable as the role 2 medical
treatment facility, due to better resources, surgeons on staff, etc.

Table 1 reports the average utility when transporting to the role 2 medical treatment facility
or the role 3 medical treatment facility, for each MEDEVAC asset j and casualty location ¢ under
the base case of the military medical evacuation system in this example.

Many of the transition probabilities depend on the length of time until a busy MEDEVAC asset
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Table 1: Average utility when transporting a true high-priority casualty to the role 2 medical

treatment facility and the role 3 medical treatment facility

ui,j727H/ 1=1 1 =2 1=3 1=4
j=1 0.364 0.364 0.291 0.291
j=2 10312 0417 0.312 0.269
j=3 10291 0.364 0.364 0.291
j=4 10312 0.343 0.312 0.343

w3 | t=1 i=2 i1=3 i=4
j=1 0.456 0.456 0.363 0.363
j=2 10390 0.520 0.390 0.336
j=3 10.363 0.456 0.456 0.363
j=4 1039 0.429 0.390 0.429

becomes free, for each dispatching or transporting action, or a call for service ends. Table 2 presents
the average service and transport time when responding to a call for service under the base case of
the military medical evacuation system in this example.

Table 2: Average service times and average transport times (in hours)
i | i=1 1=2 i=3 i=4

j=11]0.500 0.552 0.574 0.552
j=210.552 0.500 0.552 0.574

j=310574 0552 0.500 0.552
j=4]0552 0574 0552 0.500
Sijo|i=1 i=2 i=3 i—=4
j=1[018 0.136 0.188 0.210
j=210136 0083 0.136 0.157
j=31018 0.136 0.188 0.210

j=4{0210 0157 0.210 0.231
i3 |i=1 i=2 i=3 i=4
j=1[0376 0271 0.376 0.419

j= 0.271 0.167 0.271 0.315
j= 0.376 0.271 0.376 0.419
j= 0.419 0.315 0.419 0.462

The remaining transition probabilities depend on the rate at which casualties arrive to the
system. Calls arrive according to a Poisson process with parameter A = 3.0 calls per hour. The
distribution of calls P; are unevenly spaced across the four casualty locations. There is a “hotbed”
of activity and more frequent calls for service in location 2. Table 3 presents the base case set of
input parameters and the corresponding ranges used for sensitivity analysis in this example.

All computations are performed on dual servers with Quad-Core 3.00 GHz processors and
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Table 3: Input parameters and ranges considered for sensitivity analysis

Input parameter Base case value Parameter range
Medical treatment facilities d 2 -
Casualty locations n 4 -

Air MEDEVAC assets m 4 -
Classified risk levels R 2 -
Reward Ratio I’ 1.25 [1,1.5]
Distance Ratio 6 2 (2, 6]
Triage accuracy o 109 1, 109]
Call arrival rate per hour A 3.0 [1.5,3.25]
Casualties in a batch X 1 -
Probability of casualty at each location P, [0.25 0.50 0.10 0.15] -

16GB RAM. To solve the Markov decision process model (see Puterman, 1994) a value iteration
convergence algorithm with tolerance of 1077 is used. The value iteration convergence algorithm
is presented in Appendix A. The run time for the value iteration algorithm is approximately 250
minutes for the base case model with 83,521 states and 30 replications of a simulation for 10,000

casualties has a run time of approximately 18 minutes.

4.2 Policy Comparison

The optimal Markov decision process solution is compared to three heuristic policies: 1) transport
all casualties to the most rewarding medical treatment facility 2) transport all casualties to the
closest medical treatment facility and 3) transport low-priority casualties to the closest medical
treatment facility and transport high-priority casualties to the most rewarding medical treatment
facility. All three heuristics dispatch the closest available server. Figure 3 compares the objective
function value of the MDP to the performance of the three heuristics. The objective function
values are rescaled so that values reflect the average modified Golden Hour utility received per
casualty. Insights to be gained from figure 3 include the magnitude of improvement in system
performance from leveraging optimization techniques versus heuristic policies. The optimal policy
yields solution values that are, on average, 4.55%, 21.32%, and 0.72% better than heuristics 1, 2,
and 3, respectively, as the distance ratio 6 increases. It is also of note that when the distance ratio
is small, e.g. § = 2, the MDP only mildly outperforms heuristic 3 and heuristic 1. However, as the

distance ratio 0 increases, the margin in which the MDP outperforms the best heuristic increases.
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Figure 3: Simulated policy comparison

The loss rate is defined as the percentage of calls for service lost within the military medical
evacuation system, due to the system being overcrowded with no available air MEDEVAC assets.
For the MDP model, under the base case with A = 3.0 and 6§ = 2, the loss rate is 12.97%.
Likewise, when § = 6 the loss rate is 16.38%. In practice, the so-called “lost” calls are delegated
to non-traditional MEDEVAC assets so that all casualties receive timely service. Military medical
evacuation systems differ from their civilian counterparts in that every effort is made to keep the

queue for service at zero (Bozell, 2013).

4.3 Dispatching and Transporting Sensitivity

The MDP model optimizes over both the dispatching and transporting decisions, and therefore
it is of interest to know when to transport casualties to the different medical treatment facilities.
Figures 4(a) - 4(c) illustrate the sensitivity of the proportion of high-priority casualties delivered
to the role 3 medical treatment facility as a function of the distance ratio 8 for different I', \, and «

values. A main insight of military medical evacuation systems, seen in figure 4(a), is the impact
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of the reward ratio I' on the proportion of casualties transported to the more rewarding facility.
Specifically, when the role 3 medical treatment facility is 50% better than the role 2 medical
treatment facility (I' = 1.5), all high priority casualties are transported to the more rewarding role
3 medical treatment facility, regardless of whether the role 3 medical treatment facility is close or
far. Figure 4(b) provides insights on how the call arrival rate A effects the system. An increase
in A floods the system with more casualties and more high priority casualties are transported to
the role 2 medical treatment facility that is closer, so that servers can end service and be available
to respond. It is optimal to deliver almost all true high-priority casualties to the role 3 medical
treatment facility unless the role 3 medical treatment facility is very distant and there are few
marginal benefits or high call volume. In sum, these results suggest that a heuristic that transports
truly high-priority casualties to the medical treatment facility with the higher utility (unless it is
extremely distant) and truly low-priority casualties to the nearest medical treatment facility, as
done by Heuristic 3, can be used be military decision makers as a near optimal transportation
policy. A heuristic transport policy has the added benefit of greatly reducing the state space to
(1 +nN)™ states, which helps to improve model scalability. However, it is less clear which asset
to send upon initial dispatch. The dispatch decision is largely responsible for the difference in
performance between the optimal policy and Heuristic 3 (see Figure 3), and therefore, we examine
this issue next.

Table 4 presents the proportion of classified high-priority and low-priority calls to whom the
closest MEDEVAC asset is dispatched, which captures system insights on whether to send the
closest server or ration it instead. We note that the closest MECVAC asset is not always available,
so it is impossible for these values to be equal to 1.0. We examine this decision across different
levels of triage accuracy from a worst-case lower bound oo = 1 to a = 100. Consider the classified H
casualties in Table 4. The general insight we gain is that the frequency in which the closest server
is dispatched decreases for locations 3 and 4, and increases for locations 1 and 2. The model is
accounting for the call location distribution P;, where location 1 and 2 have the greatest probability
of a call for service, and reducing the response time to classified H calls for service in location 1
and 2. Reducing the response time by sending the closest server allows the servers to finish service

and become available sooner for the additional calls expected in location 1 and 2.
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In a similar manner, Table 4 also presents the closest MEDEVAC asset dispatching frequency
for classified low-priority casualties. As « increases, each MEDEVAC asset generally responds to
fewer calls in its “home” location. Therefore, when information is more accurate (i.e., when « is
large), the system “saves” some MEDEVAC assets for responding to nearby truly high-priority
casualties by strategically sending more distant MEDEVAC assets to low-priority casualties. This
suggests that as classification accuracy improves, it is optimal to ration MEDEVAC assets in areas
with the largest rate of truly high-priority calls.

Table 4: Proportion of calls for service at each location that are responded to by the closest
MEDEVAC asset

0 o Location i | classified H calls | classified L calls

=2 a=1 1 0.506 0.506
2 0.447 0.447

3 0.503 0.503

4 0.555 0.555

a =10 1 0.516 0.416

2 0.535 0.071

3 0.460 0.456

4 0.484 0.480

a =100 1 0.534 0.256

2 0.535 0.069

3 0.461 0.430

4 0.452 0.461

0=6| a=1 1 0.434 0.434
2 0.388 0.389

3 0.422 0.422

4 0.478 0.478

a=10 1 0.447 0.349

2 0.463 0.077

3 0.409 0.406

4 0.431 0.440

a = 100 1 0.457 0.237

2 0.464 0.076

3 0.415 0.347

4 0.415 0.411

We further study the impact of the initial dispatch decision on later transport decisions by
examining whether the transport decisions depend on the MEDEVAC asset dispatched. Recall that
the MEDEVAC asset dispatched to a call for service also transports the casualty. Table 5 shows

the proportion of true high-priority casualties that are transported to role 3 medical treatment
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Table 5: Proportion of true high-priority casualties transported to role 3 medical treatment facility
based on the responding MEDEVAC asset

Closest MEDEVAC | More distant MEDEVAC

0 « i asset responds asset responds
2 | a=1,10, and 100 | 1 1.000 1.000
2 1.000 1.000
3 1.000 1.000
4 1.000 1.000
6 a=1 1 0.541 0.249
2 1.000 0.780
3 0.809 0.231
4 0.480 0.037
a=10 1 0.560 0.139
2 1.000 0.761
3 0.775 0.145
4 0.429 0.042
a =100 1 0.563 0.105
2 1.000 0.756
3 0.751 0.107
4 0.317 0.053

facility in two cases: when the closest MEDEVAC asset responds and when further MEDEVAC
assets respond. Here, we see that when 6 = 2 all responding MEDEVAC assets transport casualties
to the role 3 medical treatment facility, both when dispatch classification is poor (« = 1) and
when dispatch classification is better («w = 100). Also, when the role 3 medical treatment facility
is further and 6 = 6, we see that more distant responding MEDEVAC assets are less likely to later
transport truly high-priority casualties to role 3 medical treatment facilities. There is less incentive
(in terms of the Golden Hour performance measure) to transport casualties to the role 3 medical
treatment facility when more distant MEDEVAC assets respond to a casualty. Tables 4 and 5
together shed light on how the revelation of information affects decisions throughout the treatment
and delivery of each casualty. In particular, when there are more initial classification errors, distant
assets are more likely to respond to H’ casualties, who are then less likely to be transported to

medical treatment facilities with the best capabilities.
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5 Conclusions

This paper models and analyzes optimal dispatching and transporting policies in military medical
evacuation systems. Timely transportation of casualties motivates the need to examine how to make
better interrelated decisions—how to dispatch MEDEVAC assets to casualties and then transport
casualties to medical treatment facilities—given the revelation of information over the duration of
each call. An undiscounted, infinite horizon, average-cost MDP model is formulated to identify
optimal policies, which is solved using a value iteration algorithm. In the computational example,
a situation where two medical treatment facilities are distinguishable by both their proximity to
calls for service (distance) and treatment capability (reward) is considered. Each dispatching and
transporting decision effects system resources being busy or available to respond to additional calls
for service. Optimal decision policies utilize the better role 3 medical treatment facility with varying
frequency, as system input parameters such as call volume and dispatcher classification ability are
varied. The optimal policy outperforms three heuristics considered in this paper on average by
4.55%, 21.32%, and 0.72%, respectively. The initial dispatch decisions account for much of the
improvement over the heuristic policies. The computational results suggest that for most settings,
a heuristic policy could be used for the transport decisions, which would greatly reduce the state
space and improve model scalability.

Future work will focus on the locating of two types of MEDEVAC assets, such as air assets and
ground assets. Another extension is to consider co-locating multiple types of dependent military
assets, such as a MEDEVAC asset and a security escort asset, to dispatch one unit of each type in
tandem to a casualty incident. A bi-objective model for balancing casualty Golden Hour coverage
levels and risk tolerance, such as found in risky evacuation missions. Work is also under way to

address these extensions.
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Appendices

A Value Iteration Convergence Algorithm

To solve for the optimal policy, the relative value function algorithm (see Puterman, 1994) is run
using the finite-horizon value functions. Therefore, ¢ is the iteration here, not time. To do so, define
v¢(s(t)) as the value of being in state s(t) during iteration ¢, for t =0,..., N — 1, and v(s(t)) =0
for all s(t) € S.

d m n

Ve (s(1)) % SO @isk) " s,y (5™ (5(8)]s5 = 0)) (2)
k=1j=1 i=1

+ APEP e ((S™ (s(0)s; = (i, R, X)) (2b)

X\—1 X X
S>> > (i) sy =.rx0y PR DkGAg(s(t)){Vt( (s(t)s; = D)) + yuijer}

i=1 X=1j=1 Re{H,L} re{H' L'}

(2¢)
+ ('y)\ ZZ (135) s, =G x)) ZZZ ijk) I{stk}> Vt(S(t))] (2d)

To achieve the optimal policy, the relative value iteration algorithm is run until the upper and

lower bounds converge to the optimal average utility per stage g
Li < Lyt < g < U1 < U,

with lower bound

Ly = min [ (s()) = v(s(?)]

and upper bound

Ur = macx [ (s(8)) ~ r(s(2)]

The value iteration algorithm is executed until Uy — Ly < ¢, for a given e.
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B Theoretical Results

We consider the finite stage optimality equations and consider the limit. The N-stage case MDP
equations are in Appendix A. Note that in section 3, equation la - 1d capture the exact, infinite
horizon, average cost optimality equations. In contrast, equation 2a - 2d capture the optimality
equations for the finite-horizon case.

Next we exploit the finite case optimality equations to analyze the MDP structural properties.
The first lemma shows that it is always optimal to choose to transport casualties to the more
rewarding medical treatment facilities when two when two medical treatment facilities have the

same expected transport time. This suggests that transporting to the closest facility is optimal.

Lemma 1. Suppose a MEDEVAC asset j finishes service at location i and needs to transport a
casualty with risk level r to one of two medical treatment facilities, labeled as 1 and 2, r € {H',L'}.
If both facilities have the same expected transport time, i.e., ;51 = 0;52 and facility 1 has a higher

X

ijor, then it is always better to deliver to the facility with the

utility than facility 2, i.e., ufj(.lr >u

highest utility.

Proof. Without loss of generality, assume that the system is in state s(t) with value 14(s(t)). The
set of available transport decisions here are As(s(t)) = {D1, D2}, which correspond to facilities 1
and 2. Let s;(t+1) and sa(t+ 1) denote the states when facilities 1 and 2 are selected, respectively
(see (1c)). It is sufficient to show that v (s1(t + 1)) + 7“53('17» > v(sa(t+1)) + 7uf§2r. Note that in
this case, the state in place j corresponding to asset j moves into the same transport state (i.e.,

sj = D whether medical treatment facility 1 or 2 is selected. Then, we can rearrange this to obtain
X X
YUijir — Vlijer = Ve(s2(t + 1)) — ve(s1(t + 1)).

Since 0;j1 = 0jj2 for i = 1,...,n, j = 1,...,m, then the value functions in these two states entirely

X

X X
ijlr ; > U;

cancel, yielding yus:,. — ’yuf]%r > 0, which is true since v > 0 and v}y, > ujj, fori=1,...n, j=

1,...,m, r€{H L} O

The next proposition shows that the average utility per stage is higher in a state when a

MEDEVAC is available as compared to when it is busy transporting a casualty.
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Proposition 1. Let state s(t) be a state where server j is available, i.e., sj(t) = 0. Let state 5(t)
be the corresponding state where server j is transporting a casualty, i.e., §;(t) = Dy, for some k and
Si(t) =s1(t), I =1,...,m and l # j. Then v¢(s(t)) —v(5(t)) > 0 for all t > 0.

Proof. The claim will be shown by induction. First, note that the claim is trivially true for ¢t = 0
since 14(s(0)) = 0 for all states s(0). Let s(t) and s(t+ 1) denote identical states at different times.

After some rearranging:

YWer1(s(t+1)) — w1 (8t + 1)) =

d m n
DD k) e, =,y (ST (s(t)]sy = 0) — ve(SM (5(2)]3; = 0)))
k=

1j=1i=1
n N . y .
DI o R, ( e ((5Y(a(0)ls; = (LR XY= _max (M GO1S, = G R X)))}) (30)
n N m P )
SIS > T‘im Iis;=(,m, %)} ( max  {vi(SM(s(t)|s; = Di)) + v, }— (3b)
i=1 X=1j=1Rec{H,L} re{H L'} Hij D €Az (s(t))
b e (Y (018 = D)) + WW})
n N m n m
" (’YAZ 2 2 5) ™ sy =GR %0} — ZZZ k) I{sJ-Dﬁ) (e(s(t)) = 1 (5(1)))-
i=1 X=1j=1Re{H,L} i=1j=1k=1

Note that in line (3a), the set of actions in Aj(s(t)) is a subset of those in state Aj((s(t + 1)).
Let j* = argmax{A;(5(t + 1))}. We can bound the expression above from below by setting both
j

decisions in (3a) to j*. Likewise, we can apply this same idea to the actions in As(s(t)) selected in
both maximizations in (3b). Let d* = arg n}l)ax{Ag(§(t + 1))}, and set the destination in the first
k

maximization to d*. Then,

YW (st +1)) = v (31t + 1)) =

n N
+2 Z Z APE P, (e (SM (s(lsy = G, R XN} = {m(SM (5035 = (i R, X))}

WAL A PR y
S Y A e —arxy (M (s@)lsy = d) - ne(SM (50135 = d))

im1 X=1j=1Re{H,L} re{a L'} Hij

n N m n m d
+ (’\/)\ Z Z Z (Mg)_ll{sjz(i,R,X)} ZZZ z]k I{sszk}> (ve(s(t)) — vt (3(1))).

i=1X=1j=1Re{H,L} i=1j=1k=1

Here, all four lines are non-negative using by the induction assumption. Therefore, the claim is

true.
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The second lemma shows that it is always optimal to choose to transport casualties to the
“closer” medical treatment facility if both facilities have the same utility, where a facility is “closer”

to a casualty at location i with asset j if its expected transport time is smaller,

Lemma 2. Suppose in state s(t) a MEDEVAC asset finishes service at the scene and needs to
transport a casualty with risk level r to one of two medical treatment facilities, labeled as 1 and

2, r € {H',L'}. If both facilities have the same utility, i.e., u fori=1,..,n, j =

X _

iglr — zg2r
1,...m, r € {H',L'}, and the expected transport time is shorter for facility 1, i.e., ;1 < d;j2 for
i=1,.un, j=1,..,m, then vy (SM(s(t)|s; = D1)) — vi(SM(s(t)|s; = D2)) > 0 for all t > 0 and
it is always better to deliver to the facility with the smaller expected service time.

Proof. The claim will be shown by induction. First, note that the claim is trivially true for t = 0
since 14(s(0)) = 0 for all states s(0). We assume that v4(s1(¢)) —v4(s2(t)) > 0 for all states s1 and s2
that are identical . Let MEDEVAC asset j* be the asset that must transport casualties to a medical
treatment facility. Let the state s1(t+1) = SM(s(t)|s; = D1) and let s2(t+1) = SM(s(t)|s; = D).

Next, after some rearranging:

Y(ve(s1(t+ 1)) — ve(s2(t + 1)) =

d m n
> Z 2 i) T s, =piy (4(SM (1Dls15 = 00) = (5M (52012 = 0))

{m(sM(s2(t)]s2; = (i, R X)))}) (4a)

J€A1(52(t))

n N
X pX M o _
2.0 AP PR, (jeAI?(aﬁ(t»{Vt(S (s1(t)[s1; = (i, R, X)))}

n N m
r RN
DI ID DD VD DI o (RPN S (Dke‘j‘&’;l(m{w<SM<81“>|81 = Dy)) +7ully, }— (4b)

i=1 X=1,=1 Re{H,L} re{H',L'} “iJ

{Vt(S]VI(S2(t)|52 - Dk)) +’Yu1]k'r})

Dy eAs(s2(8))
n N m n m d
+ (’Y A=Y > D W) M —trx)y — DL Z(%k)lf{sj—z)k}) (ve(s1(t)) — ve(s2(t)))
i=1 X=1j=1,j#j* Re{H,L} i=1j=1k=1
+ (i) 7" = (Bij2) 1) v( 1) = ((i51) " w(s1(t) + (i52) " ' (s2(t))) -

As in Proposition 1, let j* = arg max{A;(s2(¢))}. We can bound the expression above from below
J
by setting both decisions in (4a) to j*. Likewise, we can apply this same idea to the actions selected
in both maximizations in (4b). Let d* = arg rrbax{Ag(s2(t))}, and set the destination in the first
k

maximization to d*. Moreover, the last line can be rearranged to yield:

(651) 7 ((50(8)) — v(s1(2))) — (852) "  (v(s0(t)) — v(s2(t)))
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after noting that s0(t) = SM(s1(t)|sl; = 0) = SM(s2(t)|s2; = 0). Moreover, we can bound this
below by applying the induction assumption, with
(0:1) " ((0(8) = (s1(2))) = (d352) ~ ((s0(£))—v(s2(1))) = ((631) " = (d351) ") (w(s0(t)) —v(s1(1)))-
This yields:

V(e (s1(t+ 1)) —ve(s2(t +1))) >

d m n
SO S i) s, —py (e (SM (s1(D)]s1; = 0)) — e (S (s2(8)]52; = 0)))

k=1j=1j#j* i=1

n N
+y 0> APX P, (Vt(SM(Sl(t)Islj* = (i, R, X))) — ve(SM (s2(t) 52+ = (i, R, X))))
i=1X=1Re{H,L}
n N m P |RAi
r 3 * *
DI > S amaray ((SM(s10)]s; = d7) = n(SM (s2(1)]s2; = d)))
i=1 X=1j=1 Re{H,L} re{H,L'} Mij
n N m n m d
Flry=2=>2> > > (135) s, =i r X)) — > Z(%k)*lf{sj:m} (e (s1(t)) — ve(s2(2)))
i=1 X=1j=1,j#j* Re{H,L} i=1j=1k=1

+((6351) 7 = (8352) 1) (w(s0(8)) — v(s1(1))).

The first four lines are greater than or equal to zero by the induction assumption. The last line is

greater than or equal to zero by Proposition 1 and by noting that (§;;1) ™1 — (8;2)~! > 0. O
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